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G R A P H I C A L A B S T R A C T

A B S T R A C T

A new method of identifying anomalous oceanic temperature and salinity (T/S) data from Argo profiling floats is
proposed. The proposed method uses World Ocean Database 2013 climatology to classify good against anomalous
data by using convex hulls. An n-sided polygon (convex hull) with least area encompassing all the climatological
points is constructed using Jarvis March algorithm. Subsequently Points In Polygon (PIP) principle implemented
using ray casting algorithm is used to classify the T/S data as within or without acceptable bounds. It is observed
that various types of anomalies associated with the oceanographic data viz., spikes, bias, sensor drifts etc can be
identified using this method. Though demonstrated for Argo data it can be applied to any oceanographic data.
� The patterns of variation of the parameter (temperature or salinity) corresponding to a particular depth, along
the longitude or latitude can be used to build convex hulls.

� This method can be effectively used for quality control by building Convex hulls for various observed depths
corresponding to biogeochemical data which are sparsely observed.
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This method has the advantage of treating the bulk of oceanographic in situ data in a single iteration which
filters out anomalous data.

 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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ethod details

ackground

Argo is an international program which has deployed more than 3000 autonomous floats in the
lobal ocean. The Argo program is a major element of the Global Ocean Observing System (GOOS) and
trives to observe the ever changing temperature and salinity fields of the upper ocean. In November
007, the global Argo array of profiling floats has reached its initial target of 3000 operating floats
orldwide. As of September 20, 2017, there are 3781 active floats worldwide. A defining aspect of Argo

s that all data are reported in near real-time to meteorological forecasting centres and to the two Argo
lobal Data Assembly Centers (GDACs, localized in the USA and France), from which the accumulated
ata are made freely available without limitation to all the users [1].
An outlier is an observation that is abnormal compared to its neighbors and lies at an abnormal

istance from other values in a random sample from a population. Spatial outliers are objects with
istinct features from their surrounding neighbors in space. Detection of spatial outliers helps reveal
mportant and valuable information from large spatial data sets. In the field of oceanography, for
xample, spatial outliers can be associated with natural events like cyclones, Indian Ocean Dipole, El
iño and the Southern Oscillation or can be associated with errors due to sensor malfunction/
egradation. In oceanographic data, outliers are frequently represented in clusters, i.e., a group of
bservations from an instrument which is malfunctioning or from a float who's sensors have degraded
ver period after giving valuable data initially.
Many quality control procedures are prescribed for quality control of data from Argo floats. The

DMT had prescribed a set of 19 quality checks before the data is distributed to the users [2]. Further a
econdary quality control methods based on scientific analysis called Delayed Mode Quality Control
DMQC) is also in place [3,4]. But not all the data pertaining to global ocean are passed through DMQC.
here are also some independent methods of quality control set up by some of the Data Acquisition
entres. Quality control method based on satellite altimetry was implemented by [5]. The methods of
uality control of Argo and other in situ data archived at Coriolis Centre was described by [6]. A three
ay quality control method to qualify the profile data archived at INCOIS was proposed by [7].
owever there are pros and cons with each of these methods.
Most of these methods work with a basic assumption that the data under consideration is

ormally distributed. These methods fails when the data are not normally distributed. If there exits
ultiple modes within the data, then the standard deviation check applied to the data may result in
kewed output. As an example, the Arabian sea is divided into 10� X 10� boxes and a distribution plot
f the surface salinity data is generated. It is observed that the data in the box 60�–70� E and 0�–10� N
re bi-modally distributed (Fig. 1) owing to the formation and spreading of Arabian Sea High salinity
ater during winter in to the box mentioned above. In this case the mean and standard deviation
ill either be skewed to whichever of the two modes is most heavily sampled or the standard
eviation would be very large with a mean somewhere in the middle of the two modes. In either
ase, quality control would be compromised. Similar observations near Gulf Stream led the World
cean Atlas (WOA13) team to come up with updated version of World Ocean Atlas 2013 (refer Fig. 7
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of woa12v2_changes.pdf). This paper describes a new method to augment existing procedures, so
that the quality of the T/S profiles from Argo floats can be improved.

Building the convex hulls for outlier detection

Argo data pertaining to the Indian Ocean are downloaded from the www.incois.gov.in web site.
These data sets have been passed through the real-time quality control procedures detailed by the
ADMT to be implemented by each Data Acquisition Center. All eligible profiles are passed through
delayed mode quality control [2]. To test the proposed method, real time quality controlled profiles
were considered.

The proposed method is based on the observation that temperature and salinity when plotted
against longitude and latitude represent a certain pattern of the parameter variability for that region.
Fig. 2 shows the salinity patterns for the Indian Ocean when plotted against the longitude (Fig. 2a) and
latitude (Fig. 2b) corresponding to the 0 m depths obtained from the World Ocean Database 2013.
From the patterns one can clearly demarcate different types of waters viz., the Red Sea and Bay of
Bengal. Using this patterns a n-sided polygon is derived which is used for performing outlier analysis.

In the proposed method the principle of convex hull and Point-In-Polygon (PIP) together are used
to identify anomalous Argo T/S profiles for a specified depth. The steps for application of the proposed
method are as follows:

1. Observed Argo temperature and salinity profiles are interpolated using Akima spline [8] to the
Levitus standard depths [9].

2. Using the World Ocean Database 2013 [10,11] temperature and salinity data corresponding to each
standard depth, an n-sided polygon (convex hull) is constructed with the least area encompassing
the temperature and salinity fields with vertices of (latitude, temperature/salinity), (longitude,
temperature/salinity). A Sample polygon (convex hull) for the 0 m depth of salinity is shown in
Fig. 3.

3. Subsequently the Point-In-Polygon (PIP) algorithm is used to check if the observed Argo
temperature and salinity data (obtained in step 1) falls within or outside the n-sided polygon.

4. The quality flags of good(anomalous) data falling within(outside) the polygon are set, there by
identifying wrong profile data (See Fig. 3).

5. Using the polygon (convex hull) corresponding to the deepest depth (�2000 m) a check is made to
discern if the Argo float sensors have any degradation etc.

It is worth mentioning that the method proposed here is applicable to two dimensions, however
this can be extended to higher dimensions as well, where in a m-dimensional n-sided polyhedrons of

Fig.1. Frequency distribution of surface salinity in Arabian Sea. The data pertains to the 10� X 10� box of 60�–70� E and 0�–10� N.
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Fig. 3. Generation of n-sided polygon (convex hull) based on the quality controlled climatological World Ocean Database
2013 and classification of good (filled square) and bad (crossed circle) data based on PIP and Jordan Curve Theorem. The number
of intersections (numbered as 1–4 in figure) for a ray passing from the exterior of the polygon to any point; if odd, it shows that
the point lies inside the polygon. If it is even, the point lies outside the polygon [12].

Fig. 2. Patterns of salinity in the Indian Ocean when plotted against (a) longitude and (b) latitude corresponding to the depth
0 m obtained from World Ocean Database 2013.
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latitude/longitude and temperature/salinity can be built and the observed profiles from Argo floats
can be checked for outliers. However in this work we restrict the application of the proposed method
to two dimensions only. The quality controlled climatology data used for the proposed method are
temperature and salinity from World Ocean Database 2013 of the US National Centers for
Environmental Information (NCEI). These quality controlled data are used to build polygons (convex
hulls) for each standard depth. Since T/S profiles data from Argo floats are not available at regular
depths, they are first uniformly interpolated to the standard depths represented in [9] using Akima
spline [8]. The scattered observations thus obtained from Argo floats are checked to see if they are
falling within the corresponding polygon (obtained from climatological data for that standard depth)
using PIP algorithm. Jarvis March [13] algorithm also famously called as gift wrapping algorithm was
used for constructing polygon (convex hull). This method is based on the principle of building a convex
hull given a set of points and has a complexity of O(nh) where n is the number of points and h is the
number of points on the convex hull. Fig. 3 shows a sample n-sided polygon (convex hull) built from
WOD13 data at the ocean surface (0 m depth). Similar n-sided polygons for each standard depths are
generated and used for qualifying the Argo temperature and salinity data. Once an n-sided polygon is
constructed, the PIP algorithm is used to check if the observed Argo temperature and salinity data fall
inside or outside the polygon.

Point-in-polygon (PIP) implementation

In computational geometry, the PIP problem asks whether a given point in the plane lies inside,
outside, or on the boundary of a polygon. It is a special case of point location problems and finds
applications in areas that deal with processing geometrical data, such as computer graphics, computer
vision, geographical information systems (GIS), motion planning, and Computer Aided Design.

There are many algorithms available to check whether the given point lies inside the polygon or not,
like Crossing Test [14], Angle summation test, Triangle test [15] and Ray Casting Algorithm. In the present
work the “Ray Casting Algorithm” was chosen for the purpose of identifying whether a given point lies
inside or outside the algorithm. Fig. 3 shows a sample test for identifying whether a point is inside or
outside the polygon. The Ray Casting Algorithm checks how many times a ray, starting from the point and
going in ANY fixed direction, intersects the edges of the polygon. The number of intersections is an even
number if the point is outside, and it is odd if inside. This algorithm is also known as the crossing number
algorithm or the even-odd rule algorithm, and was known as early as 1962 [14].

The algorithm is based on a simple observation that if a point moves along a ray from infinity to the
probe point and if it crosses the boundary of a polygon, possibly several times, then it alternately goes
from the outside to inside, then from the inside to the outside, etc. As a result, after every two “border
crossings” the moving point goes outside. This observation may be mathematically proved using the
Jordan curve theorem [16]. In topology, a Jordan curve (simple closed curve) is a non-self-intersecting
continuous loop in the plane. The Jordan curve theorem asserts that every Jordan curve divides the
plane into an “interior” region bounded by the curve and an “exterior” region containing all of the
nearby and far away exterior points, so that any continuous path connecting a point of one region to a
point of the other intersects with that loop somewhere. Fig. 3 explains a sample scenario of how to
determine whether a given data is good (bad) by virtue of it lying within (outside) the n-sided polygon.
The biggest advantage of this proposed method is that large number of profiles data can be checked for
their quality without manual intervention.

Validation of the proposed method

In general temperature and pressure sensors are found to be robust and salinity sensors on Argo
floats are susceptible to changes, degradation owing to bio-fouling [3]. Some of the recorded problems
with salinity sensors are, offsets, freshening due to Tri-Butyl Tin Oxide (TBTO), drift after a set of cycles
etc. Hence the importance in checking the quality of salinity data. Here we will check the Indian Ocean
Argo salinity data using the proposed method. Quality controlled climatological data of salinity
corresponding to the profiling depth of the floats under consideration are obtained from WOD13. An
n-sided polygon (convex hull) is constructed using Jarvis March algorithm. Argo float time series for
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he profiling depth values are then obtained and checked against this n-sided polygon using PIP
lgorithm. If the points fall outside the polygon, the Argo time series is suspected to have a problem
drift, bias, spike etc) or represent anomalous oceanic condition. Because the climatology incorporates

 large number of observations spanning decades, a float is suspected to have a problem if the profiling
epth salinity points fall outside the n-sided polygon.
To demonstrate the robustness of the proposed method, 5 typical floats are chosen which represent

ifferent problems like drift, offset, grey listed etc. The details of the floats chosen for the validation are
iven in Table 1. These examples include good and anomalous floats, together with their positions and
-sided polygons for their respective profiling depth. The first float, identified as WMO
900782 travelling southward in the Arabian Sea, is a typical example of a good float. All the
rofiles are observed to be good with the salinities corresponding to the profiling depth falling within
he n-sided polygon built from the WOD13 climatological data (Fig. 4).

able 1
etails of the floats chosen for validation of polygon method.

S.No WMOID First Cycle Last Cycle Total Cycles Parking/Profiling depth Type of problem

1. 2900782 22/06/2007 07/01/2012 167 2000/2000 Good
2. 2900877 11/09/2007 04/09/2012 183 2000/2000 TBTO Fouling
3. 2901340 25/12/2011 19/12/2014 110 2000/2000 Freshening for short duration
4. 2900783 09/07/2007 29/12/2012 201 2000/2000 Grey Listed float
5. 2900554 06/09/2005 27/06/2009 279 1000/2000 Salinity drift

ig. 4. (a) n-sided polygon (grey shaded region) constructed with longitude, salinity observations corresponding to the profiling
epth (2000 m) of float WMOID 2900782. (b) same as (a) but with latitude. (c) Trajectory of the float during its life time.
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The second example (WMO 2900877) is contaminated by TBTO fouling which is evident from the
initial fresher salinity profiles. The conductivity cell drifts because of the possible change in the
dimension of the conductivity cell due to fouling. TBTO is used to improve the anti-fouling in the
conductivity cell [17]. Sometime this causes erroneous freshening in the initial profiles until the
coating is washed off. Clearly one can see all the initial profiles falling outside the n-sided polygon
(Fig. 5), thereby indicating the case of the TBTO contamination. Also one can see the few profiles
(cycle 33, 43) which are spikes in the time series of the float which are observed to fall outside the
polygon.

The third example is a float which is observed to have drift in the salinity sensor only for few
cycles. This float is observed to have salinity drift between cycles 16–22. This can sometime happen
due to some biological matter entering into the conductivity pipe. When the biological matter is
washed out, the salinity sensor tends to come back to normalcy. This is clearly observed by the
corresponding salinity values at profiling depth of 2000 m falling outside the n-sided polygon
(Fig. 6). This floats seems to have recovered to normalcy after cycle 22. The float with WMO 2900783
in the Bay of Bengal (Fig. 7 shows a typical case of a float whose salinity at profiling depth (2000 m) is
completely offset to that of the climatology. All the salinity values corresponding to this float are
observed to be falling well outside the n-sided polygon right from the cycle 1. This is typical case of a
greylisted float. Greylisting is used for real-time operations of Argo floats, to detect a sensor

Fig. 5. (a) n-sided polygon (grey shaded region) constructed with longitude, salinity observations corresponding to the profiling
depth (2000 m) of float WMOID 2900877. (b) same as (a) but with latitude. (c) Trajectory of the float during its life time.
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alfunction. It is a list of suspicious or malfunctioning float sensors and is managed by each Data
cquisition Centre (DAC).
The last example is that of a float with WMO 2900554 in the Arabian Sea (Fig. 8) whose salinity

tarted to drift starting from cycle 200. All the salinity values fall outside the n-sided polygon from
his cycle onwards. The examples discussed above are only an illustration of the possible cases
mong which the anomalous floats fall including spikes, offsets, and drift. These examples
emonstrate the usefulness of the proposed method for identifying bad profiles. The biggest
dvantage of the proposed method is its applicability to suite of float data in a single test which can
asily detect good against anomalous profiles. For better results this methods can be augmented
ith other methods in use by the Argo community like altimetry based QC and objectively analyzed
ased QC.

dditional information

The number of profiles obtained annually by Argo floats in the world oceans was more than
0,000 in 2003 and this number increased to about 173,524 profiles in 2016. There are around
4,076 CTD casts in World Ocean Database (WOD) which reach deeper than 2000 m and in total there
re 115,808 CTD casts in WOD deeper than 1500 m which makes Argo’s recent yearly contribution
reater than all historic CTD casts deeper than 1500 m. Argo in conjunction with many other data sets

ig. 6. (a) n-sided polygon (grey shaded region) constructed with longitude, salinity observations corresponding to theprofiling
epth (2000 m) of float WMOID 2901340. (b) same as (a) but with latitude. (c) Trajectory of the float during its life time.
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are used in studies related to climate change, sea level rise, ocean heat content, mixed layer processes,
assimilation into ocean models (GODAS), generation of better analysis products etc. However some of
the studies require that the data from these instruments be of high quality as the results might be
sensitive to biases or instrument errors. These anomalous data are to be identified and eliminated or
flagged before the data is put to use.

Over the past decade or more, geographic distribution of oceanographic T/S profile data has
become more uniform owing to the deployment of Argo profiling floats. From running the ocean
models operationally to the preparation of climatologies, oceanographic data is widely put to use.
Argo floats deployed by various countries are deployed by different groups who use different types of
pressure and CTD sensors. Each country has their own choice of setting the measurement resolution
for obtaining the T/S samples. Owing to different methods of measurements, different instruments
and differences in handling the data, there is the possibility of leaving some anomalous data
unnoticed. Even though the Argo Data Management Team (ADMT) has implemented a system of
quality checks [2], as different organizations/institutions employ additional methods for performing
quality checks on data, there can be scope for existence of erroneous data. It would be a cumbersome
process to individually pin point these anomalous data even though various methods of handling
these datasets are developed.

Fig. 7. (a) n-sided polygon (grey shaded region) constructed with longitude, salinity observations corresponding to the profiling
depth (2000 m) of float WMOID 2900783. (b) same as (a) but with latitude. (c) Trajectory of the float during its life time.
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